Chapter 6
Network Security Il

Contents
6.1 The Application LayerandDNS 270
6.1.1 A Sample of Application-Layer Protocols 270
6.1.2 The Domain Name System (DNS) 271
6.1.3 DNSAttacks 278
6.1.4 DNSSEC, 285
6.2 Firewalls 287
6.2.1 Firewall Policies 288
6.2.2 Stateless and Stateful Firewalls 289
6.3 Tunneling.c. i 292
6.3.1 SecureShell (SSH) 293
6.32 IPsec 294
6.3.3 Virtual Private Networking (VPN) 297
6.4 IntrusionDetection 299
6.4.1 Intrusion DetectionEvents. 302
6.4.2 Rule-Based Intrusion Detection 305
6.4.3 Statistical Intrusion Detection 306
6.44 PortScanning 308
6.45 Honeypots 312
6.5 Wireless Networking 313
6.5.1 Wireless Technologies 314
6.5.2 Wired Equivalent Privacy (WEP) 315
6.5.3 Wi-Fi Protected Access (WPA) 318
6.6 Exercises 322

270

Chapter 6. Network Security IT

6.1 The Application Layer and DNS

The physical, link, network, and transportation layers provide a basic
underlying network infrastructure that allows applications to communicate
with each other. It is in the application layer that most of the action of the
Internet takes place.

6.1.1

A Sample of Application-Layer Protocols

There are many application-layer protocols designed to perform a number
of important tasks at Internet-scale, including the following;:

Domain name system (DNS). This is the protocol that allows us to use
intuitive domain names to refer to Internet hosts rather than using
IP addresses. Most application programs and other application-layer
services rely on DNS.

Hypertext transfer protocol (HTTP). This is the protocol used to
browse the Web and is discussed in detail in Section 7.1.1.

SSL/TLS. This is the protocol used for secure, encrypted browsing
(i.e., with HTTPS) and is also discussed in Section 7.1.2.

IMAP/POP/SMTP. These are protocols that make Internet email pos-
sible. They are discussed in Section 10.2.

File transfer protocol (FTP). This is an old, but still used, protocol that
provides a simple interface for uploading and downloading files. It
does not encrypt data during transfer.

SOAP. This is a more recent protocol for exchanging structured data
as a part of the web services paradigm.

Telnet. This is an early remote access protocol. Like FTP, it doesn’t
encrypt connections.

SSH. This is a more recent secure remote access and administration
protocol, and is discussed in Section 6.3.1.

Each application-layer protocol comes with its own security consid-
erations, and an entire book could be written on the vast number of
application-layer protocols. In this section, we focus on one of the most
commonly used protocols, DNS, since it is one of the pillars of the architec-
ture of the Internet itself.

6.1. The Application Layer and DNS 271

6.1.2 The Domain Name System (DNS)

The domain name system, or DNS, is a fundamental application layer pro-
tocol that is essential to the functioning of the Internet as we know it today.
DNS is a protocol that sits “behind the scenes” for every web browser and
is responsible for resolving domain names, such as www.example.com, to
IP addresses, such as 208.77.188.166. (See Figure 6.1.)

/DNS—\

www.example.com 208.77.188.166

ﬂ [] [] http://wv;w.example.com

Figure 6.1: The DNS protocol performs a lookup for domain name
www.example.com to find the IP address associated with this domain.
(Image by Karen Goodrich; used with permission.)

It is hard to imagine surfing the net without DNS, in fact. For instance,
would the Internet still be popular if we had to tell our friends about the
video we just watched on 74.125.127.100?

Domain names are arranged in a hierarchy that can be read by examin-
ing a domain name from right to left. For example, www.example.com has
a top-level domain (TLD) of com, with example.com being a subdomain
of com, and www.example.com being a subdomain of example.com. More
formally, domain names form a rooted tree, where each node corresponds
to a domain and the children of a node correspond to its subdomains. The
root is the empty domain name and the children of the root are associated
with top-level domains.

272

Chapter 6. Network Security IT

Domain Name Registration

There are two primary types of top-level domains in use today:

o Generic top-level domains, such as the popular domains .com, .net,
.edu, and .org

o Country-code top-level domains, such as .au (Australia), .de (Ger-
many), .it (Italy), and .pt (Portugal), with use restricted to entities
within a specific country

Domain names are registered and assigned by domain-name regis-
trars, which are organizations accredited by the Internet Corporation for
Assigned Names and Numbers (ICANN), the same group responsible for
allocating IP address space, or a country-code top-level domain that has
been granted authority to designate registrars. Web site owners wishing to
register a domain name can contact a domain-name registrar to reserve the
name on their behalf.

The registration process itself is pretty simple. Other than a small fee
charged by a domain-name registrar, the rest of the registration process sim-
ply involves providing some contact information. This information is often
publicly available, however, and can be a source of valuable information
for an attacker.

For example, common system utilities such as whois can be used to
retrieve the contact information of the owner of a particular domain, which
might then be used to initiate a social engineering attack. To avoid dis-
closing personal details via this information, some web site owners choose
to use anonymous domain registration services that specifically do not
publish contact information for their customers. Unfortunately, this use
of anonymity can sometimes be abused.

Because of the revenue potential of memorable domain names, a prac-
tice known as cybersquatting or domain squatting has become common-
place. In such a scenario, a person registers a domain name in anticipation
of that domain being desirable or important to another organization, with
the intent of selling the domain to that organization for what can sometimes
be a significant profit. Some cybersquatters go so far as to post negative
remarks or accusations about the target organization on this page to further
encourage the target to purchase the domain in defense of its reputation.
Such practices are now illegal under U.S. law, but it is often difficult to de-
termine the line between malicious intent and coincidental luck in choosing
marketable domain names.

6.1. The Application Layer and DNS

How DNS is Organized

The hierarchical nature of domain names is reflected in the way the Internet
infrastructure supporting the DNS system works. That is, to resolve a
domain name to its corresponding IP address, the DNS hierarchy is used
to query a distributed system of DNS servers, known as name servers.
At the top of the name-server hierarchy are the root name servers, which
are responsible for top-level domains, such as .com, .it, .net, and .org.
Specifically, the root name servers store the root zone database of records
indicating the authoritative name server of each top-level domain. This
important database is maintained by ICANN. The name servers of each
top-level domain are managed by government and commercial organiza-
tions. For example, the name servers for the .com TLD are managed by
VeriSign, a company incorporated in the U.S., while the name servers for
the .it TLD are managed by the Italian National Research Council, an Italian
government organization. In turn, the TLD name servers store records
for the authoritative name servers of their respective subdomains. Thus,
the authoritative name servers are also organized in a hierarchy. (See
Figure 6.2.)

[google.com] [microsoft.com]"_

cs.brown.edu

Figure 6.2: The hierarchical organization of authoritative name servers. Each
name server stores a collection of records, each providing the address of a
domain or a reference to an authoritative name server for that domain.

273

274

Chapter 6. Network Security IT

How DNS Queries Work

When a client machine wishes to resolve a domain name such as
www.example.com to an IP address, it contacts a designated name server
assigned to the machine. This designated name server can be, for exam-
ple, a name server of the corporate network to which the client machine
belongs, or a name server of the Internet service provider. The designated
name server handles the resolution of the domain name and returns the
result to the client machine, as follows.

First, the designated name server issues a DNS query to a root name
server. The root server then responds with the address of the server that is
authoritative for the next level of the hierarchy—in this example, it would
reply with the address of the name server responsible for the .com top-
level domain name. On querying this next-level server, it would respond
with the address of the name server responsible for the next subdomain,
which in this case is example.com. This sequence of requests and responses
continues until a name server responds with the IP address of the requested
domain. This final name server is therefore the authoritative responder for
the requested domain name, which in this case is www.example.com.

The process of domain-name resolution is depicted in Figure 6.3.

root
Where is name server
www.example.com?
ISP DNS , =
ry com
Server /J nameserver

Client Where is N i Wherelis . — com
www.example.com?
— www.example.com? p name server

<— Try example.com [—
nameserver

) < 208.77.188.166 |

Where is
www.example.com?

—
example.com

name server

Figure 6.3: A typical execution of a DNS query. The client machine queries
a designated name server, such as a name server of its service provider.
The designated name server in turn queries a root name server, then a top-
level domain name server, and finally the authoritative name server for the
requested domain. Once the intermediate name server resolves the domain
name, it forwards the answer to the client machine.

6.1. The Application Layer and DNS

DNS Packet Structure

DNS queries and replies are transmitted via a single UDP packet, with TCP
being used as a substitute for requests or replies exceeding 512 bytes. The
standard UDP packet used for DNS consists of a header, a query part, and
an answer part.

The header is formated as follows:

e The header includes a 16-bit query identifier, also called transaction
identifier, which identifies the query and response.

The query part, in turn, consists of the following:

e The query part is a sequence of “questions” (usually just one), each
consisting of the domain name queried and the type of record re-
quested. The query ID is selected by the client sending the query and
is replicated in the response from the server.

The answer part consists of a sequence of DNS records, each of consist-
ing of the following fields:

e The NAME field is of variable length and contains a full domain name.

e The 2-byte TYPE field indicates the type of DNS record. A standard
domain-to-address resolution is described by an A record, but other
types exist as well, including NS records (providing information
about name servers), MX records (providing information about email
resolution), and several other less commonly used record types.

e The 2-byte CLASS field denotes the broad category that the record
applies to, such as IN for Internet domains.

e The 4-byte TTL field specifies how long a record will remain valid, in
seconds.

e The 2-byte RDLENGTH field indicates the length of the data segment,
in bytes.

e The variable-length RDATA segment includes the actual record data.
For example, the RDATA segment of an A record is a 32-bit IP address.

275

276

Chapter 6. Network Security IT

DNS Caching

Since DNS is a central service utilized by billions of machines connected
to the Internet, without any additional mechanisms, DNS would place an
incredible burden on high-level name servers, especially the root name
servers. In order to reduce DNS traffic and resolve domain names more
efficiently, DNS features a caching mechanism that allows both clients and
lower-level DNS servers to keep a DNS cache, a table of recently receivd
DNS records. A name server can then use this cache to resolve queries
for domain names it has recently answered, rather than consuming the
resources of higher-level name servers. This caching system therefore
overcomes the problem of massive amounts of traffic directed at root name
servers by allowing lower-level name servers to resolve queries.

Caching changes how DNS resolution works. Instead of directly query-
ing each time a root name server, the designated name server first checks
its cache and returns to the client the requested IP if a record is found. If
not, the designated name server queries the root name server and resolves
the domain name as described above, caching the result as it is returned to
the client. A value known as the time-to-live (I'TL) determines how long a
DNS response record remains in a DNS cache. This value is specified in the
DNS response, but administrators can configure local settings that override
the provided TTL values. Once a cached record has expired, the query
process resorts back to asking a higher-level name server for a response.

Some operating systems maintain a local DNS cache on the machine.
If a valid record is found for the desired domain, then this record is used
and no DNS queries are issued. The details of DNS caching depend on the
chosen operating system and application. For example, Windows features
its own DNS cache, while many Linux distributions do not. They opt
to query predetermined name servers for each resolution instead. The
DNS cache on a Windows system can be viewed by issuing the command
ipconfig /displaydns at a command prompt. In general, web browsers are
responsible for extracting a user-supplied domain name and passing it to
the operating system’s networking component, which handles the sending
of a corresponding DNS request. The reply will then be received by the
operating system and passed back to the browser. At this stage, if the oper-
ating system has its own DNS cache, it stores the DNS reply information in
the cache before passing it back to the application. DNS caches maintained
by operating systems have privacy implications for users. Namely, even
if the user deletes the browsing history and cookies, the DNS cache will
preserve evidence of recently visited sites, which could be unveiled by
forensic investigation.

6.1. The Application Layer and DNS

In addition, several cross-platform browsers, including Firefox, support
their own DNS caches. However, Internet Explorer, which is intended to
run on Windows, does not implement this feature because Windows has its
own cache.

Another challenge in the resolution of domain names is the possi-
bility of infinite loops. Suppose in the example above, the .com name
server replied indicating that the authoritative name server for the ex-
ample.com domain is ns1.example.com. DNS responses that delegate to
other name servers identify these name servers by name, rather than by
IP address, so an additional DNS request is required to resolve the IP
address of ns1.example.com. However, because the name server is both
a subdomain of example.com and its authoritative name server, there is
a circular dependency that cannot be resolved. In order to resolve exam-
ple.com, ns1.example.com must be resolved first, but in order to resolve
nsi.example.com, example.com must first be resolved. To break these
loops, responses include glue records that provide enough information to
prevent these dependencies. In this example, the .com name server would
include a glue record resolving ns1.example.com to its IP address, giving
the client enough information to continue.

One can experiment with DNS resolution with the help of several
command-line tools. On Windows, nslookup can be used at a command
prompt to issue DNS requests. On Linux, users may use either nslookup or
dig, as depicted in Figure 6.4.

cslab % dig @4.2.2.2 www.example.com

; <<>> DiG 9.6-ESV-R1 <<>> @4.2.2.2 www.example.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 29228

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: O, ADDITIONAL: O

;3 QUESTION SECTION:
;WWW.example.com. IN A

;; ANSWER SECTION:
WWw.example.com. 43200 IN A 192.0.32.10

;5 Query time: 88 msec

;; SERVER: 4.2.2.2#53(4.2.2.2)

53 WHEN: Thu Jul 15 01:17:47 2010
;3 MSG SIZE rcvd: 49

Figure 6.4: Using the dig tool to issue a DNS query for domain
www.example.com to the root name server at IP address 4.2.2.2.

277

278

Chapter 6. Network Security I1

6.1.3 DNS Attacks

By relying on DNS to resolve domain names to IP addresses, we place a
large degree of trust in the fact that DNS requests are resolved correctly.
When we navigate to www.example.com, for instance, we expect to be
directed to the IP address actually associated with that domain name.

Pharming and Phishing

Consider, however, what could happen if DNS were somehow subverted
so that an attacker could control how DNS requests resolve. Because DNS
is so central to how domain names are used to navigate the Web, such
a subversion would cause the safety of the Web to be compromised. An
attacker could cause requests for web sites to resolve to false IP addresses
of his own malicious servers, leading the victim to view or download
undesired content, such as malware. Such an attack is known as pharming.

One of the main uses of pharming is to resolve a domain name to a web
site that appears identical to the requested site, but is instead designed for
a malicious intent. Such an attack is known as phishing and it can be used
to try to grab usernames and passwords, credit card numbers, and other
personal information. (See Figure 6.5.)

Normal |/ — /1
DNS Pharming
attack
Iwww.example.com ! /

| www.example.com |

E {]] http://www.example.com . E} :] [} .
My Premium Blog SpOt h“p:.//wwwexamplemm
My Premium Blog Spot
A fM R T———

= e

useriD: |

' user(D: | INEEG—_—
password: |
password: |

| Phishing: the different web sites look the same. I—-"

Figure 6.5: A pharming attack that maps a domain name to a malicious
server, which then performs a phishing attack by delivering a web page that
looks the same as the real one, to trick people into entering their userIDs
and passwords. (Image by Karen Goodrich; used with permission.)

6.1. The Application Layer and DNS

Other Pharming Attacks

Victims of a combined pharming and phishing attack would have no way of
distinguishing between the fake and real sites, since all of the information
conveyed by the browser indicates that they are visiting a trusted web site.
(See also Section 7.2.2.) There are other types of pharming attacks, as well.

For instance, email relies on specialized DNS entries known as MX
records, so another possible pharming attack allows an attacker to redirect
mail intended for certain domains to a malicious server that steals infor-
mation. Given that many online services allow password recovery through
email, this could be a means of performing identity theft.

Other pharming attacks might associate the domain name used for
operating system updates with a malicious IP address, causing victims to
automatically download and execute malicious code instead of a needed
software patch. In fact, the possibilities of damage from pharming attacks
are nearly endless because of the large degree of trust placed on the truth-
fulness of domain-name resolutions. Thus, DNS compromises can have
dire consequences for Internet users.

DNS Cache Poisoning

Some DNS attacks are made possible by a technique known as DNS cache
poisoning. In this technique, an attacker attempts to trick a DNS server into
caching a false DNS record, which will then cause all downstream clients
issuing DNS requests to that server to resolve domains to attacker-supplied
IP addresses. Consider the following DNS cache poisoning scenario:

1. An attacker, Eve, has decided to launch a DNS cache poisoning attack
against an ISP DNS server. She rapidly transmits DNS queries to this
server, which in turn queries an authoritative name server on behalf
of Eve.

2. Evesimultaneously sends a DNS response to her own query, spoofing
the source IP address as originating at the authoritative name server,
with the destination IP set to the ISP DNS server target.

3. The ISP server accepts Eve’s forged response and caches a DNS entry
associating the domain Eve requested with the malicious IP address
Eve provided in her forged responses. At this point, any downstream
users of that ISP will be directed to Eve’s malicious web site when
they issue DNS requests to resolve the domain name targeted by Eve.

There are several obstacles an attacker like Eve must overcome to issue
a fake DNS response that will be accepted. First, an attacker must issue

279

280

Chapter 6. Network Security I1

a response to her own DNS query before the authoritative name server
is given a chance to respond. This obstacle is easily overcome, however,
because if the attacker forces the target name server to query external
authoritative name servers, she can expect that her immediate, direct re-
sponse will be received before these external name servers have a chance
to perform a lookup and issue a reply. Second, each DNS request is given
a 16-bit query ID. If the response to a query is not marked with the same
ID as its corresponding request, it will be ignored. In 2002, it was revealed
that most major DNS software simply used sequential numbers for query
IDs, however, allowing easy prediction and circumvention of this naive
authentication. (See Figure 6.6.) Once this bug was disclosed, most DNS
software vendors began to implement randomization of query IDs.

ISP DNS Server

Evil Client DNS Request
(a) _| DNS Request [— www.:gz.r;:com?
Where is Query ID =x
www.example.com?

DNS cache

ISP DNS Server

Evil Client

DNS Reply_

(b) g =
Query ID = x

(DNS cache

ISP DNS Server

DNS
Request

— Where is

—>
www.example.com?
; g '
DNS cache

Figure 6.6: A DNS cache poisoning attack: (a) First, the attacker sends a DNS
request for the domain he wishes to poison. The ISP DNS server checks its
cache and queries root name servers for the domain. (b) The attacker sends
a corresponding reply for his own request, guessing the transaction ID. If
he successfully guesses the random query ID chosen by the ISP DNS server,
the response will be cached. (c) Any clients of the ISP DNS server issuing
DNS requests for the poisoned domain will be redirected to the attacker’s
IP address.

Victim Client

6.1. The Application Layer and DNS

DNS Cache Poisoning and the Birthday Paradox

Unfortunately, randomization of transaction IDs does not completely solve
the problem of DNS cache poisoning. If an attacker can successfully guess
the ID associated with an outbound DNS request and issue a response
with the same ID, the scenario above would still be possible, as depicted
in Figure 6.6. This guessing is actually more likely if the attacker issues a
lot of fake requests and responses to the same domain name lookup.

This increase in attack success probability from an increase in fake
requests is a result of a principle known as the birthday paradox, which
states that the probability of two or more people in a group of 23 sharing the
same birthday is greater than 50%. This intuitively surprising result is due
to the fact that in a group of 23 people, there are actually 23 - 22/2 = 253
pairs of birthdays, and it only takes one matching pair for the birthday
paradox to hold. (The birthday paradox and its use to find collisions in a
hash function is also discussed in Section 8.3.2.)

Let us apply the reasoning of the birthday paradox to DNS cache
poisoning. An attacker issuing a fake response will guess a transaction ID
equal to one of n different 16-bit real IDs with probability 1/2!%; hence,
she would fail to match one with probability 1 — 1/2!°. Thus, an attacker
issuing 7 fake responses will fail to guess a transaction ID equal to one of n
different 16-bit real IDs with probability

n n
(1= 56)
By issuing at least n = 213 requests and an equal number of random fake
responses, an attacker will have roughly at least a 50% chance that one of

her random responses will match a real request. (See Figure 6.7.)
ISP DNS Server

Evil Client = =
— nDNS 2 _ n DNS > DNS
(a) D] Requests: 3 1 Requests e Lookup
—_ | Where is > | with n different strings: [
E www.example.com B ey IDIEx I~
ISP DNS Server
Evil Client | 'n DNS - = : n DNS
(b) D — Replies: £ <| Replies:
) | e g T
e Query D=y < auenyib=x

Figure 6.7: A DNS cache poisoning attack based on the birthday paradox:
(a) First, an attacker sends n DNS requests for the domain she wishes to
poison. (b) The attacker sends 1 corresponding replies for her own request.
If she successfully guesses one of the random query IDs chosen by the ISP
DNS server, the response will be cached.

281

282

Chapter 6. Network Security IT

Subdomain DNS Cache Poisoning

Despite the birthday paradox, the above guessing attack is extremely lim-
ited because of its narrow time frame. Recall that when a correct response
to a DNS query is received, that result is cached by the receiving server and
stored for the time specified in the time-to-live field. When a name server
has a record in its cache, it uses that record rather than issuing a new query
to an authoritative name server. As a result, the attacker can only make as
many guesses as he can send in the time between the initial request and
the valid reply from the authoritative name server. On each failed guessing
attempt, the valid (harmless) response will be cached by the targeted name
server, so the attacker must wait for that response to expire before trying
again. Responses may be cached for minutes, hours, or even days, so this
slowdown makes the attack described above almost completely infeasible.

Unfortunately, a new subdomain DNS cache poisoning attack was dis-
covered in 2008 that allows attackers to successfully perform DNS cache
poisoning by using two new techniques. Rather than issuing a request
and response for a target domain like example.com, which would only
allow one attempt at a time, the attacker issues many requests, each
for a different nonexistent subdomain of the target domain. For exam-
ple, the attacker might send requests for subdomains aaaa.example.com,
aaab.example.com, aaac.example.com, and so on. These subdomains
don’t actually exist, of course, so the name server for the target domain,
example.com, just ignores these requests. Simultaneously, the attacker
issues responses for each of these requests, each with a guessed transaction
ID. Because the attacker now has so many chances to correctly guess the
response ID and there is no competition from the target domain to worry
about, it is relatively likely that the attack will be successful. This new attack
was shown to be successful against many popular DNS software packages,
including BIND, the most commonly used system.

Using Subdomain Resolution for DNS Cache Poisoning

By itself, this attack accomplishes little—on a successful attempt, the at-
tacker only manages to poison the DNS record for a nonexistent domain.
This is where the second new technique comes into play. Rather than sim-
ply reply with an address for each fake subdomain like abcc.example.com,
the attacker’s responses include a glue record that resolves the name server
of the target domain, example.com, to an attacker-controlled server. Us-
ing this strategy, on successfully guessing the transaction ID the attacker
can control not just one DNS resolution for a nonexistent domain but all
resolutions for the entire target domain.

6.1. The Application Layer and DNS

Client-Side DNS Cache Poisoning Attacks

In addition to attacks on name servers, a similar DNS cache poisoning
attack can be conducted against a target client as depicted in Figure 6.8.

Evil Website
Victim
@/
ISP DNS Server
i -1 ons =
— Requests [—>
DNS ﬂ — i —
Requests

Victim
Evil Website

"

Figure 6.8: A DNS cache poisoning attack against a client: (a) On visiting a
malicious web site, the victim views a page containing many images, each
causing a separate DNS request to be made to a nonexistent subdomain
of the domain that is to be poisoned. (b) The malicious web server sends
guessed responses to each of these requests. On a successful guess, the
client’s DNS cache will be poisoned.

|

An attacker can construct a malicious web site containing HTML tags
that automatically issue requests for additional URLs such as image tags.
These image tags each issue a request to a different nonexistent subdomain
of the domain the attacker wishes to poison. When the attacker receives
indication that the victim has navigated to this page, he can rapidly send
DNS replies with poisoned glue records to the client. On a successful attack,
the client will cache the poisoned DNS entry.

This type of attack is especially stealthy, since it can be initiated just
by someone visiting a web site that contains images that trigger the attack.
These images will not be found, of course, but the only warning the user
has that this is causing a DNS cache poisoning attack is that the browser
window may display some icons for missing images.

283

284

Chapter 6. Network Security IT
Identifying the Risks of Subdomain DNS Cache Poisoning

The subdomain DNS cache poisoning attack does not rely on a vulnerability
in a specific implementation of DNS, which could be problematic in its own
right. Instead, the attack demonstrates two weakness in the DNS protocol
itself:

e Relying on a 16-bit number as the only mechanism for verifying the
authenticity of DNS responses, which is insufficient for security

e Having the response for a nonexisting subdomain request be a nonre-
sponse

As such, this form of DNS cache poisoning is difficult to prevent. It
would be a daunting task to actually fix the underlying vulnerabilities by
forcing the adoption of a new version of DNS, given the critical nature of
DNS in the Internet’s infrastructure. Instead, several stopgap measures
have been put in place to reduce the risk of attack until a more permanent
solution is developed.

Some Defenses Against Subdomain DNS Cache Poisoning

First, most DNS cache poisoning attacks are targeted towards ISP DNS
servers, known as local DNS (LDNS) servers, rather than authoritative
name servers. Prior to more recent cache poisoning attacks, the practice
of leaving LDNS servers openly accessible to the outside world was com-
mon, but since 2008, most LDNS servers have been reconfigured to only
accept requests from within their internal network. This prevents all cache
poisoning attempts originating from outside of an ISP’s network. However,
the possibility of attacking from within the network remains.

To further reduce the chances of a successful attack, many DNS imple-
mentations now incorporate source-port randomization (SPR), the practice
of randomizing the port from which DNS queries originate (and must be
replied to). This decreases the likelihood of successfully generating a false
DNS reply that will be accepted. In addition to the 2! possible query
IDs, the number of possible combinations is multiplied by the number
of possible source ports, which typically numbers around 64,000. While
this additional randomness is an improvement, it has been demonstrated
that DNS cache poisoning is still possible against name servers using both
random query IDs and source-port randomization.

6.1. The Application Layer and DNS

6.1.4 DNSSEC

Since the stopgap measures mentioned above are insufficient to completely
mitigate the risk of DNS cache poisoning, a new approach to DNS must
be taken. One possible solution is the adoption of DNSSEC, which is a
set of security extensions to the DNS protocol that prevent attacks such
as cache poisoning by digitally signing all DNS replies using public-key
cryptography. Such signatures make it infeasible for an attacker to spoof a
DNS reply and thereby poison a DNS cache.

One challenge to the widespread implementation of DNSSEC, however,
is that it represents an extension to the DNS protocol itself; hence, in
order to work, DNSSEC must be deployed at both the client and server
ends. At the time of this writing, DNSSEC is being deployed more and
more frequently, but it has yet to be adopted universally. Thus, until it or
something like it is widely adopted, there will still be security risks in the
DNS protocol.

DNSSEC uses several new types of DNS records. When a client issues
a DNS request, the request packet indicates that DNSSEC is supported. If
the queried server also supports DNSSEC, then a resource-record signature
(RRSIG) record is returned alongside any resolved queries. The RRSIG
record contains a digital signature of the returned records computed by
generating a hash of the returned records and encrypting this hash with
the authoritative name server’s private key. In addition to the RRSIG
record, the response to the client contains a DNSKEY record containing
the authoritative name server’s public key. The client can then verify the
authenticity of the returned records by decrypting the digital signature
using the name server’s public key and comparing the hash to a locally
computed hash of the records.

The only step remaining is to establish trust in the name server’s sup-
posed public key. This is essential to the security of the system. Otherwise,
an attacker could simply intercept traffic, sign fake DNS response records
with his own private key, and send his own public key as a DNSKEY record.
To prevent this type of attack, DNSSEC employs a chain of trust. Recalling
that each DNS zone (besides the root zone) has a parent zone, trust can be
established by relying on a hierarchy working back up to the root name
server. To validate a particular zone’s public key, the client requests a
designated signer (DS) record from that zone’s parent, which contains a
hash of the child zone’s public key. In addition to this DS record, the parent
name server returns its own DNSKEY record and another RRSIG record
containing a digitally signed copy of the DS record.

285

286

Chapter 6. Network Security I1

To perform signature verification, the client uses the parent name
server’s DNSKEY to decrypt the RRSIG record, compares this to the DS
record, and finally compares the DS record to the child name server’s
DNSKEY. This process is repeated until a “trusted key” that the client has
existing knowledge of and does not need to verify is encountered. Ideally,
the root name server would represent this point of trust, but at the time
of this writing, the root name server does not provide DNSSEC. For now,
DNSSEC clients must be configured with other known trust points at levels
below the root name server. (See Figure 6.9.)

This public key is known to client

.com vouches for example.com \
\ .com

example.com =~
[
b

/v DNSKEY Root of trust

.com

example.com
vouches for DS:
book.example.com

Client 3
2 v =S
os| < loneke
1 DNSKEY.

DNS Response
book.example.com:
1.1.1.1

book.example.com
—\/Q
3 book.example.co

DNSKEY 3

Figure 6.9: A DNSSEC response and the chain of trust that validates it. In
this case, book.example.com returns a signed DNS response along with
its public key, example.com sends its public key and a signed DS record
validating the public key of book.example.com, and .com sends its public
key and a signed DS record validating the public key of example.com. The
client can trust this chain, since it knows the public key of .com.

6.2. Firewalls 287

6.2 Firewalls

It is now an accepted fact that the Internet is a vast network of untrusted
and potentially malicious machines. In order to protect private networks
and individual machines from the dangers of the greater Internet, a firewall
can be employed to filter incoming or outgoing traffic based on a predefined
set of rules that are are called firewall policies.

Firewalls may be used both as a protective measure, to shield internal
network users from malicious attackers on the Internet, or as a means of
censorship. For example, many companies prevent internal users from
using certain protocols or visiting certain web sites by employing firewall
technology. On a much larger scale, some countries, such as China, im-
pose censorship of their citizens by subjecting them to restrictive national
firewall policies that prevent users from visiting certain types of web sites.

Firewalls can be implemented in either hardware or software, and are
typically deployed at the perimeter of an internal network, at the point
where that network connects to the Internet. (See Figure 6.10.) In this
model of network topography, the Internet is considered an untrusted
zone, the internal network is considered a zone of higher trust, and any
machines, like a firewall, situated between the Internet and the internal
trusted network are in what is known as a demilitarized zone, or DMZ
(borrowing terminology from the military). Incidentally, firewalls are also
commonly implemented in software on personal computers.

Trusted internal network

Firewall policies

Untr

Figure 6.10: A firewall uses firewall policies to regulate communication
traffic between the untrusted Internet and a trusted internal network.

288

Chapter 6. Network Security IT

6.2.1 Firewall Policies

Before examining the specifics of how firewalls are implemented, it is
important to understand the different conceptual approaches to defining
firewall policies for an organization or machine. Packets flowing through a
firewall can have one of three outcomes:

o Accepted: permitted through the firewall
e Dropped: not allowed through with no indication of failure

® Rejected: not allowed through, accompanied by an attempt to inform
the source that the packet was rejected

Policies used by the firewall to handle packets are based on several
properties of the packets being inspected, including the protocol used (such
as TCP or UDP), the source and destination I addresses, the source and
destination ports, and, in some cases, the application-level payload of the
packet (e.g., whether it contains a virus).

Blacklists and White Lists

There are two fundamental approaches to creating firewall policies (or rule-
sets) to effectively minimize vulnerability to the outside world while main-
taining the desired functionality for the machines in the trusted internal
network (or individual computer). Some network administrators choose a
blacklist approach, or default-allow ruleset. In this configuration, all pack-
ets are allowed through except those that fit the rules defined specifically
in a blacklist. This type of configuration is more flexible in ensuring that
service to the internal network is not disrupted by the firewall, but is naive
from a security perspective in that it assumes the network administrator
can enumerate all of the properties of malicious traffic.

A safer approach to defining a firewall ruleset is to implement a white
list or default-deny policy, in which packets are dropped or rejected unless
they are specifically allowed by the firewall. For example, a network
administrator might decide that the only legitimate traffic entering the
network is HTTP traffic destined for the web server and that all other in-
bound traffic should be dropped. While this configuration requires greater
familiarity with the protocols used by the internal network, it provides the
greatest possible caution in deciding which traffic is acceptable.

6.2. Firewalls

6.2.2 Stateless and Stateful Firewalls

Firewalls can support policies that are based on properties of each packet
in isolation, or they can consider packets in a broader context.

Stateless Firewalls

One simple implementation of a firewall is known as a stateless firewall.

Such a firewall doesn’t maintain any remembered context (or “state”)
with respect to the packets it is processing. Instead, it treats each packet
attempting to travel through it in isolation without considering packets that
it has processed previously. In particular, stateless firewalls don’t have any
memory dedicated to determining if a given packet is part of an existing
connection. Stateless firewalls simply inspect packets and apply rules based
on the source and destination IP addresses and ports.

While stateless firewalls provide a starting point for managing traffic
flow between two untrusted zones and require little overhead, they lack
flexibility and often require a choice between limited functionality and lax
security. Consider the case of a user on the internal network wishing to
connect via TCP to an external web site. First, the user initiates the connec-
tion by sending a TCP packet marked with the SYN flag set as discussed
in Section 5.4.1. In order for this packet to be allowed, the firewall must
permit outbound packets originating at the user’s IP from whichever port
the user sends the request. Next, the web server responds with a packet that
has the SYN and ACK flags set. For this packet to be allowed through, the
firewall must allow inbound packets sent from the web server, presumably
originating from the appropriate port for web traffic. (See Figure 6.11.)

SYN

B —— Seq =x
Port=80
SYN-ACK
<€—— Seq=y
Ack=x+1
ACK

= Seq=x+1
Ack=y+1

v

Trusted internal
network
Firewall

Allow outbound SYN packets, destination port=80
Allow inbound SYN-ACK packets, source port=80

Figure 6.11: A stateless firewall allowing TCP sessions initiating an HTTP
connection (port 80) with a request from the trusted internal network.

289

290

Chapter 6. Network Security IT

Blocking Undesired Packets

Note that if the above policy were in place, all traffic from a web server
originating at the default port for web servers would be allowed through
the firewall to the user’s machine, which may be undesirable. This policy
can be tightened somewhat by observing that the firewall does not need to
allow TCP packets marked with just the SYN flag to reach the user. (See
Figure 6.12.) While this restriction would prevent outside parties from
initiating TCP connections to an internal machine, it would not prevent
them from probing the network with other packets not marked with the
SYN flag.

SYN
Seq =y Attacker
Port=80
Ve
Trusted internal
network
Firewall

Allow outbound SYN packets, destination port=80
Drop inbound SYN packets,
Allow inbound SYN-ACK packets, source port=80

Figure 6.12: A stateless firewall dropping TCP sessions initiating an HTTP
connection with a request from outside the trusted internal network.

Stateful Firewalls

Since stateless firewalls don’t keep track of any previous traffic, they have
no way of knowing whether a particular packet is in response to a previous
packet originating within the network or if it is an unprompted packet.
Stateful firewalls, on the other hand, can tell when packets are part of
legitimate sessions originating within a trusted network. Like NAT devices
(Section 5.4.3), stateful firewalls maintain tables containing information on
each active connection, including the IP addresses, ports, and sequence
numbers of packets. Using these tables, stateful firewalls can solve the
problem of only allowing inbound TCP packets that are in response to
a connection initiated from within the internal network. Once the initial
handshake is complete and allowed through the firewall, all subsequent
communication via that connection will be allowed, until the connection is
finally terminated. (See Figure 6.13.)

6.2. Firewalls

76.120.54.101
SYN Server

— Seq=x >
128.34.78.55 Port=80

SYN-ACK m
<

Seq =y
B/ Ack = x + 1
ACK

Trusted internal —| seq=x+1 >\
network Ack =y +1
SYN-ACK
(blocked)] €——— sSeq=y —— |Attacker
Port=80

Allow outbound TCP sessions,
destination port=80

Established TCP session: | Firewall
(128.34.78.55, 76.120.54.101)

Firewall state table
Figure 6.13: A statefull firewall configured to allow TCP web sessions (port
80) with a request coming from inside the trusted internal network.

Handling TCP connections is relatively straightforward because both
parties must perform an initial handshake to set up the connection. Han-
dling UDP traffic is not as clear. Most stateful firewalls consider a UDP
“session” (an abstraction that is not reflected in the underlying protocol) to
be started when a legitimate UDP packet is allowed through the firewall.
At this point, all subsequent UDP transmissions between the same two IPs
and ports are allowed, until a specified timeout is reached.

Stateful firewalls allow administrators to apply more restrictive rules
to network traffic and create more effective policies for inbound versus
outbound traffic. However, sometimes it is desirable to be able to man-
age traffic based on the actual contents of packets entering and exiting a
network rather than merely considering the origin and destination. This
is possible through the use of application-layer firewalls. As the name
indicates, these firewalls are capable of examining the data stored at the
application layer of inbound and outbound packets, and apply rules based
on these contents. For example, simple rules might reject all requests for a
particular web site. Most modern firewalls employ some level of higher-
layer filtering, which depends on the properties of an IP packet’s payload,
such as the properties of the headers of TCP and UDP packets. In general,
the practice of examining higher-layer data in network traffic is known as
deep packet inspection. It is frequently used in conjunction with intrusion
detection systems and intrusion prevention systems to make sophisticated
policies delineating acceptable and potentially malicious traffic.

291

292

Chapter 6. Network Security IT

6.3 Tunneling

As we have mentioned, one of the challenges of Internet communication
is that it is not secure by default. The contents of TCP packets are not
normally encrypted, so if someone is eavesdropping on a TCP connection,
he can often see the complete contents of the payloads in this session.
One way to prevent such eavesdropping without changing the software
performing the communication is to use a tunneling protocol. In such a
protocol, the communication between a client and server is automatically
encrypted, so that useful eavesdropping is infeasible. To use such a proto-
col, the client and server have to have some way of establishing encryption
and decryption keys, so using a tunneling protocol requires some setup.
Unfortunately, the content of this setup requires the use of application-
layer concepts, such as identity and authorization, in transport-layer or
network-layer protocols. As a result, tunneling technology allows one to
solve some security weaknesses with TCP/IP protocols at the expense of
adding overhead to the IP protocol stack. Nevertheless, tunneling is now
a widely used technology, since it allows users to communicate securely
across the untrusted Internet. (See Figure 6.14.)

Client Server

Tunneling protocol
(does end-to-end encryption and decryption)

Tl \A

. Untrusted
TCP/IP Internet

.= — \/\—/\

(]
!
Payloads are encrypted here

Figure 6.14: Tunneling protocols provide end-to-end encryption of TCP/IP
communication between a client and a server.

6.3. Tunneling 293

6.3.1 Secure Shell (SSH)

In the early days of the Internet, it became clear that the ability to administer
a machine remotely was a powerful capability. Early remote administration
protocols such as telent, FTP, and rlogin allowed administrators to control
machines remotely via a command prompt or shell, but provided no form
of encryption and instead sent data in plaintext. To remedy these insecure
protocols, SSH was created to use symmetric and public-key cryptography
to communicate across the Internet using an encrypted channel.

The security of SSH is based on the combination of the respective
strengths of the encryption, decryption, and key exchange algorithms that
SSH uses. Because of its strong security, the SSH protocol is used for a
variety of tasks in addition to secure remote administration, including file
transfer through the simple Secure Copy Protocol (SCP) or as part of the
more full-featured Secure File-Transfer Protocol (SFTP).

In addition, one of the most common uses of the SSH protocol is for se-
cure tunneling. Because the protocol is designed such that an eavesdropper
cannot deduce the contents of SSH traffic, a tunnel established using SSH
will prevent many attacks based on packet sniffing. To establish an SSH
connection, a client and server go through the following steps:

1. The client connects to the server via a TCP session.

2. The client and server exchange information on administrative details,
such as supported encryption methods and their protocol version,
each choosing a set of protocols that the other supports.

3. The client and server initiate a secret-key exchange to establish a
shared secret session key, which is used to encrypt their communi-
cation (but not for authentication). This session key is used in con-
junction with a chosen block cipher (typically AES, 3DES, Blowfish,
or IDEA) to encrypt all further communications.

4. The server sends the client a list of acceptable forms of authentication,
which the client will try in sequence. The most common mechanism is
to use a password or the following public-key authentication method:

(a) If public-key authentication is the selected mechanism, the client
sends the server its public key.

(b) The server then checks if this key is stored in its list of authorized
keys. If so, the server encrypts a challenge using the client’s
public key and sends it to the client.

(c) The client decrypts the challenge with its private key and re-
sponds to the server, proving its identity.

5. Once authentication has been successfully completed, the server lets
the client access appropriate resources, such as a command prompt.

294

Chapter 6. Network Security IT

6.3.2 |Psec

One of the fundamental shortcomings of the Internet Protocol is a lack of
built-in security measures to ensure the authenticity and privacy of each IP
packet. IP itself has no mechanism for ensuring a particular packet comes
from a trusted source, since IP packets merely contain a “source address”
field that can be spoofed by anyone. In addition, there is no attempt to
encrypt data contained in IP packets to guarantee data privacy. Finally,
while the IP header contains a noncryptographic checksum for verifying
the integrity of the header, there is no attempt to do the same for the
payload. The questions of authentication and privacy are addressed in
several upper-layer protocols, such as DNSSEC (Section 6.1.4), SSH (Sec-
tion 6.3.1), and SSL/TLS (Section 7.1.2), but a more powerful solution at the
network layer would guarantee security for all applications. To solve these
problems, a protocol suite known as Internet Protocol Security (IPsec) was
created. IPsec was created in conjunction with IPv6, but was designed to be
backwards-compatible for use with IPv4. Because it operates at the network
layer, IPsec is completely transparent to applications. Implementing IPsec
requires a modified IP stack, but no changes to network applications are
necessary.

IPsec consists of several protocols, each addressing different security
needs. Each protocol can operate in one of two modes, transport mode
or tunnel mode. In transport mode, additional IPsec header information
is inserted before the data of the original packet, and only the payload of
the packet is encrypted or authenticated. In contrast, when using tunnel
mode, a new packet is constructed with IPsec header information, and the
entire original packet, including its header, is encapsulated as the payload
of the new packet. Tunnel mode is commonly used to create virtual private
networks (VPNs), which are discussed in Section 6.3.3.

In order to use IPsec extensions, the two parties communicating must
first set up a set of security associations (SAs), pieces of information that
describe how secure communications are to be conducted between the two
parties. SAs contain encryption keys, information on which algorithms are
to be used, and other parameters related to communication. SAs are uni-
directional, so each party must create an SA for inbound and outbound
traffic. Communicating parties store SAs in a security association database
(SADB). IPsec provides protection for outgoing packets and verifies or
decrypts incoming packets by using a security parameter index (SPI) field
stored in the IPsec packet header, along with the destination or source
IP address, to index into the SADB and perform actions based on the
appropriate SA.

6.3. Tunneling

Internet Key Exchange (IKE)

IPsec uses the Internet Key Exchange (IKE) protocol to handle the negotia-
tion of SAs. IKE operates in two stages: first, an initial security association
is established to encrypt subsequent IKE communications, and second, this
encrypted channel is used to define the SAs for the actual IPsec traffic.
To establish the initial SA, a secure-key exchange algorithm is used to
establish a shared secret key between the two parties. Once this encrypted
channel is established, the parties exchange information to define their SAs,
including an encryption algorithm, a hash algorithm, and an authentication
method such as preshared keys. Once these SAs have been created, the two
parties can communicate using IPsec protocols to provide confidentiality,
authentication, and data integrity.

The Authentication Header (AH)

The Authentication Header (AH) protocol is used to authenticate the origin
and guarantee the data integrity of IPsec packets. The AH, shown in
Figure 6.15, is added to an IPsec packet before the payload, which either
contains the original IP payload or the entire encapsulated IP packet, de-
pending on whether the transport or tunnel mode is used.

— IP Header
IP Header
Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31]
Next Header Payload Length (Reserved)
; Auth
Security Parameters Index (SPI) ™ Header
Sequence Number
Authentication Data B
Data

— Payload

Figure 6.15: The authentication header.

295

296

Chapter 6. Network Security IT

Components of the Authentication Header

The AH header contains a security parameter index (SPI) used to identify
the security association associated with the packet, a randomly initialized
sequence number to prevent replay attacks, and an “authentication data”
field that contains an integrity check value (ICV). The ICV is computed by
hashing the entire packet, including the IPsec header, with the exception of
fields that may change during routing and the authentication data itself.
The hash is computed by using a message authentication code (MAC)
(Section 1.3.4), an algorithm that acts as a cryptographic hash function but
also makes use of a secret key. The recommended hash function for this
MAC is SHA-256. If a malicious party were to tamper with the packet,
then the receiving party would discover the discrepancy by recomputing
the ICV. In addition, since a secret key is used, only an authenticated party
could properly encrypt the payload, verifying the packet’s origin. AH’s
strong authentication comes at a cost. It does not work in conjunction
with Network Address Translation (NAT), because its IP source address
is included among its authenticated data. Therefore, a NAT device could
not successfully rewrite the source IP address while maintaining the ICV of
the packet.

The Encapsulating Security Payload (ESP)

Whereas AH provides integrity and origin authentication, it does nothing
to guarantee confidentiality—packets are still unencrypted. To satisfy this
additional security requirement, the encapsulating security payload (ESP)
header, depicted in Figure 6.16, can be used. While AH places a header
before the payload or original packet, ESP encapsulates its payload by
providing a header and a “trailer.” To provide encryption, ESP uses a
specified block cipher (typically AES, 3DES, or Blowfish) to encrypt either
the entire original IP packet or just its data, depending on whether the
tunnel or transport mode is used. ESP also provides optional authentication
in the form of an “authentication data” field in the ESP trailer. Unlike AH,
ESP authenticates the ESP header and payload, but not the IP header. This
provides slightly weaker security in that it does not protect the IP header
from tampering, but allows NAT devices to successfully rewrite source IP
addresses. However, note that encryption of the payload poses another
problem for NAT. Since TCP port numbers are no longer visible to NAT
devices, some other identifier must be used to maintain the NAT lookup
table.

6.3. Tunneling 297

IP Header Header

Sequence Number

Encrypted Data Payload

(Padding) Pad Length Next Header
Authentication Data

ESP
Trailer

Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31 ESP
Security Parameters Index (SPI) Header

Figure 6.16: The ESP header.

6.3.3 Virtual Private Networking (VPN)

Virtual private networking (VPN) is a technology that allows private net-
works to be safely extended over long physical distances by making use of a
public network, such as the Internet, as a means of transport. VPN provides
guarantees of data confidentiality, integrity, and authentication, despite the
use of an untrusted network for transmission. There are two primary types
of VPNis, remote access VPN and site-to-site VPN.

Remote access VPNs allow authorized clients to access a private net-
work that is referred to as an intranet. For example, an organization may
wish to allow employees access to the company network remotely but make
it appear as though they are local to their system and even the Internet itself.
To accomplish this, the organization sets up a VPN endpoint, known as a
network access server, or NAS. Clients typically install VPN client software
on their machines, which handle negotiating a connection to the NAS and
facilitating communication.

Site-to-site VPN solutions are designed to provide a secure bridge be-
tween two or more physically distant networks. Before VPN, organizations
wishing to safely bridge their private networks purchased expensive leased
lines to directly connect their intranets with cabling. VPN provides the
same security but uses the Internet for communication rather than relying
on a private physical layer. To create a site-to-site VPN connection, both
networks have a separate VPN endpoint, each of which communicates with
the other and transmits traffic appropriately.

VPN itself is not standardized, and many companies provide competing
VPN solutions. However, most VPN implementations make use of a
limited set of protocols to securely transfer data. The details of each of these
protocols is beyond the scope of this book, but nearly all use tunneling and

298

Chapter 6. Network Security IT

encapsulation techniques to protect network traffic. For example, one of the
most widely deployed implementations uses the point-to-point tunneling
protocol (PPTP). PPTP works by establishing a connection using the peer-
to-peer (PPP) link-layer protocol, then encapsulating PPP frames, which
are encrypted using Microsoft Point-to-Point Encryption (MPPE), inside IP
packets that can be sent across the Internet. A newer protocol, the Layer
2 Tunneling Protocol (L2TP), was designed to replace PPTP and another
older tunneling protocol, Cisco’s Layer 2 Forwarding (L2F). The entire L2TP
frame, including both header and payload, is encapsulated within a UDP
datagram. Within the L2TP packet, a number of link-layer protocols can be
encapsulated, including PPP and Ethernet. L2TP is commonly used in con-
junction with IPsec to ensure authentication, integrity, and confidentiality.

Some Risks in Allowing for VPNs and Tunneling

While VPNs and other secure tunneling technologies solve one security
problem (i.e., how to communicate securely across the Internet), they ac-
tually can create another. In particular, one of the most common methods
to circumvent firewall policy relies on the use of tunneling. When using
a tunneling protocol, the payloads of a series of network packets are en-
capsulated in a different delivery protocol that might otherwise be blocked
by a firewall. Deep packet inspection is useless in this case (other than to
detect that a tunnel protocol is being used), since the payloads in a tunnel
protocol are encrypted.

For instance, an information-leakage attack, such as sending company
secrets out of a compromised network using HTTP packets, becomes more
difficult to detect when protocols relying on tunneling are used. Because
tunnel protocols are designed such that an eavesdropper cannot deduce
the contents of the encrypted traffic, no amount of deep packet inspection
can determine whether the tunneling is being used for a legitimate purpose
or whether it is being used as a wrapper for a forbidden protocol. As
another example of using tunneling to subvert firewall rules, suppose an
organization prevents users from visiting certain web sites from within the
internal network. If outbound tunnel connections are allowed, then an
internal user could establish a tunnel to an external server that routes HTTP
traffic to a forbidden web site on behalf of that user, and sends responses
back to the user via the same tunnel. Attackers can also use tunneling
to circumvent firewall policy for more malicious purposes. Therefore, it
is essential that care be taken when defining acceptable traffic policies for
users, especially in regards to protocols that could potentially be used for
tunneling.

6.4. Intrusion Detection 299

6.4 Intrusion Detection

An intrusion detection system (IDS) is a software or hardware system that
is used to detect signs of malicious activity on a network or individual
computer. The functions of an IDS are divided between IDS sensors, which
collect real-time data about the functioning of network components and
computers, and an IDS manager, which receives reports from sensors.

The IDS manager compiles data from the IDS sensors to determine if
an intrusion has occurred. This determination is usually based on a set of
site policies, which are sets of rules and statistical conditions that define
probable intrusions. If an IDS manager detects an intrusion, then it sounds
an alarm so that system administrators can react to a possible attack. (See
Figure 6.17.)

s IDS Manager

\
¢ Untrusted
Internet

router

IDS Sensor

IDS Sensor

router

Figure 6.17: A local-area network monitored by an intrusion detection sys-
tem (IDS). Solid lines depict network connections and gray dashed lines
depict data reporting responsibilities. Routers and selected computers
report to IDS sensors, which in turn report to the IDS manager.

300

Chapter 6. Network Security IT

Intrusions

An IDS is designed to detect a number of threats, including the following:

o masquerader: an attacker who is falsely using the identity and/or
credentials of a legitimate user to gain access to a computer system
or network

e Misfeasor: a legitimate user who performs actions he is not autho-
rized to do

o Clandestine user: a user who tries to block or cover up his actions by
deleting audit files and/or system logs

In addition, an IDS is designed to detect automated attacks and threats,
including the following;:

e port scans: information gathering intended to determine which ports
on a host are open for TCP connections (Section 6.4.4)

e Denial-of-service attacks: network attacks meant to overwhelm a
host and shut out legitimate accesses (Section 5.5)

e Malware attacks: replicating malicious software attacks, such as
Trojan horses, computer worms, viruses, etc. (Section 4.3)

e ARP spoofing: an attempt to redirect IP traffic in a local-area network
(Section 5.2.3)

e DNS cache poisoning: a pharming attack directed at changing a host’s
DN cache to create a falsified domain-name/IP-address association
(Section 6.1.3)

Intrusion Detection Techniques

Intrusion detection systems can be deployed in a wide variety of contexts
to perform different functions. A traditional network intrusion detection
system (NIDS) sits at the perimeter of a network and detects malicious
behavior based on traffic patterns and content. A protocol-based intrusion
detection system (PIDS) is specifically tailored towards detecting malicious
behaviors in a specific protocol, and is usually deployed on a particular
network host. For example, a web server might run a PIDS to analyze
incoming HTTP traffic and drop requests that may be potentially malicious
or contain errors. Similarly, a PIDS may monitor application traffic between
two hosts; for example, traffic between a web server and a database might
be inspected for malformed database queries. Finally, a host-based IDS

6.4. Intrusion Detection

(HIDS) resides on a single system and monitors activity on that machine, in-
cluding system calls, interprocess communication, and patterns in resource
usage.

Network IDSs usually work by performing deep packet inspection on
incoming and outgoing traffic, and applying a set of attack signatures or
heuristics to determine whether traffic patterns indicate malicious behavior.
Some network IDSs work by maintaining a database of attack signatures
that must be regularly updated, while others rely on statistical analysis to
establish a “baseline” of performance on the network, and signal an alert
when network traffic deviates from this baseline.

Host IDSs usually work by monitoring audit files and system logs to
detect masquerading and misfeasant users who attempt unauthorized ac-
tions, and clandestine users who try to delete or modify system monitoring.
Such systems typically use heuristic rules or statistical analysis to detect
when a user is deviating from “normal” behavior, which could indicate
that this user is a masquerading user. Misfeasant users can be detected by
a system that has rules defining authorized and unauthorized actions for
each user. Finally, clandestine users can be detected by monitoring and
logging how changes are made to audit files and system logs themselves.

Passive IDSs log potentially malicious events and alert the network
administrator so that action can be taken. They don’t take any preemptive
actions on their own. On the other hand, more sophisticated reactive
systems, known as intrusion prevention systems (IPS), work in conjunction
with firewalls and other network devices to mitigate the malicious activity
directly. For example, an IPS may detect patterns suggesting a DOS attack,
and automatically update the firewall ruleset to drop all traffic from the
malicious party’s IP address. The most commonly used IPS is an open
source solution called Snort, which employs both signature-based detection
as well as heuristics.

An IDS Attack

One technique to evade detection is to attempt to launch a denial-of-service
attack on the IDS itself. By deliberately triggering a high number of intru-
sion alerts, an attacker may overwhelm an IDS to the point that it cannot log
every event, or at the very least, make it difficult to identify which logged
event represents an actual attack and which were used as a diversion. More
advanced techniques to evade detection force IDS developers to employ
sophisticated heuristics and signature schemes based on state-of-the-art
machine learning and artificial intelligence research.

301

302 Chapter 6. Network Security I1

6.4.1 Intrusion Detection Events

Intrusion detection is not an exact science. Two types of errors may occur:
e False positive: when an alarm is sounded on benign activity, which is
not an intrusion

e False negative: when an alarm is not sounded on a malicious event,
which is an intrusion
Of these two, false negatives are generally considered more problematic
because system damage may be going unnoticed. False positives, on the
other hand, are more annoying, since they tend to waste time and resources
on perceived threats that are not actual attacks. The ideal conditions, then,
are as follows. (See Figure 6.18.)
e True positive: when an alarm is sounded on a malicious event, which
is an intrusion

o True negative: when an alarm is not sounded on benign activity,
which is not an intrusion

Intrusion Attack No Intrusion Attack
Alarm
Sounded
NYPD
03539480 03539480
True Positive False Positive
No CT)
Alarm @
Sounded Y
N
False Negative True Negative

Figure 6.18: The four conditions for alarm sounding by an intrusion detec-
tion system.

6.4. Intrusion Detection

The Base-Rate Fallacy

Unfortunately, it is difficult to create an intrusion detection system with the
desirable properties of having both a high true-positive rate and a low false-
negative rate. Often, there are a small number of false positives and false
negatives that an intrusion detection system may allow.

If the number of actual intrusions is relatively small compared to the
amount of data being analyzed, then the effectiveness of an intrusion
detection system can be reduced. In particular, the effectiveness of some
IDSs can be misinterpreted due to a statistical error known as the base-rate
fallacy. This type of error occurs when the probability of some conditional
event is assessed without considering the “base rate” of that event.

This principle can be best illustrated in the context of intrusion detection
with an example. Suppose an IDS generates audit logs for system events.
Also suppose that when the IDS examines an audit log that indicates real
malicious activity (a true positive), it detects the event with probability 99%.
This is a high success rate for an IDS, but it still implies that when the IDS
examines a benign audit log, it may mistakenly identify a harmless event
in that audit log as malicious with a probability of 1% (which would be a
false positive).

The base-rate fallacy might convince an administrator that the false-
alarm rate is 1%, because that is the rate of failure for the IDS. This is not
the case, however. Consider the following scenario:

e Suppose an intrusion detection system generates 1,000,100 audit logs
entries.

e Suppose further that only 100 of the 1,000,100 entries correspond to
actual malicious events.

e Because of the success rate of the IDS, of the 100 malicious events, 99
will be detected as malicious, which is good.

e Nevertheless, of the 1,000,000 benign events, 10,000 will be mistak-
enly identified as malicious.

e Thus, there will be 10,099 alarms sounded, 10,000 of which are false
alarms, yielding a false alarm rate of about 99%!

Note, therefore, that in order to achieve any sort of reasonable reliability
with such an intrusion detection system, the false-positive rate will need to
be prohibitively low, depending on the relative number of benign events;
hence, care should be taken to avoid the base-rate fallacy when analyzing
the probability of misdiagnosing IDS events.

303

304

Chapter 6. Network Security IT
IDS Data Collection and Audit Records

The input to an intrusion detection system is a stream of records that
identifies elementary actions for a network or host. The types of actions
that are present in such a stream could, for instance, include each HTTP
session attempted, each login attempted, and each TCP session initiated for
a network-based IDS, and each read, write, or execute performed on any
file for a host-based IDS. IDS sensors detect such actions, create records
that characterize them, and then either report such records immediately to
the IDS manager or write them to an audit log.

In an influential 1987 paper, Dorothy Denning identified several fields
that should be included in such event records:

e Subject: the initiator of an action on the target

o Object: the resource being targeted, such as a file, command, device,
or network protocol

e Action: the operation being performed by the subject towards the
object

e Exception-condition: any error message or exception condition that
was raised by this action

e Resource-usage: quantitative items that were expended by the system
performing or responding to this action

o Time-stamp: a unique identifier for the moment in time when this
action was initiated

For example, if a user, Alice, writes 104 kilobytes of data to a file, dog.exe,
then an audit record of this event could look like the following:

[Alice, dog.exe, write, "no error", 104KB, 20100304113451]

Likewise, if a client, 128.72.201.120, attempts to initiate an HTTP session
with a server, 201.33.42.108, then an audit record of this event might look
like the following:

[128.72.201.120, 201.33.42.108, HTTP, 0.02 CPUsec, 20100304114022]

The exact format for such records would be determined by the IDS designer,
and may include other fields as well, but the essential fields listed above
should be included.

6.4. Intrusion Detection

6.4.2 Rule-Based Intrusion Detection

A technique used by intrusion detection systems to identify events that
should trigger alarms is to use rules. These rules could identify the types of
actions that match certain known profiles for an intrusion attack, in which
case the rule would encode a signature for such an attack. Thus, if the IDS
manager sees an event that matches the signature for such a rule, it would
immediately sound an alarm, possibly even indicating the particular type
of attack that is suspected.

IDS rules can also encode policies that system administrators have set
up for users and/or hosts. If such a rule is triggered, then, by policy, it
means that a user is acting in a suspicious manner or that a host is being
accessed in a suspicious way. Examples of such policies could include the
following:

e Desktop computers may not be used as HTTP servers.

e HTTP servers may not accept (unencrypted) telnet or FTP sessions.
e Users should not read personal directories of other users.

e Users may not write to files owned by other users.

e Users may only use licensed software on one machine at a time.

e Users must use authorized VPN software to access their desktop
computers remotely.

e Users may not use the administrative computer server between the
hours of midnight and 4:00 am.

Rule-based intrusion detection can be a powerful tool to detect mali-
cious behavior, because each rule identifies an action that policy makers
have thought about and have identified as clearly being suspicious. Thus,
the potential for annoying false-positive alarms is low, because the policy
makers themselves have determined the list of rules. Each rule is there for
a reason—if administrators don’t like a particular rule, they can remove it,
and if they feel that a rule is currently missing, they can add it.

Nevertheless, there are some limitations that may allow knowledgeable
attackers to evade rule-based intrusion detection. In particular, signature-
based schemes are fundamentally limited in that they require the IDS
to have a signature for each type of attack. By performing attacks that
might not have a corresponding signature, or by obfuscating the payload
of packets containing malicious traffic, signature-based solutions may be
bypassed.

305

306

Chapter 6. Network Security IT

6.4.3 Statistical Intrusion Detection

One of the main approaches to intrusion detection is based on statistics.
The process begins by gathering audit data about a certain user or host, to
determine baseline numerical values about the actions that that person or
machine performs. The actions can be grouped by object (that is, all actions
having the same object field), action, or exception-condition. Actions could
also be aggregated over various time ranges or in terms of ranges or per-
centages of resource usages. Numerical values that can be derived include:

e Count: the number of occurrences of a certain type of action in the
given time range

e Average: the average number of occurrences of a certain type of action
in a given of time ranges

o Percentage: the percent of a resource that a certain type of action takes
over a given time range

e Metering: aggregates or average-of-averages accumulated over a rel-
atively long period of time

o Time-interval length: the amount of time that passes between in-
stances of an action of a certain type

For example, a system might track how many times a user uses the login
program each day, how often a user initiates HTTP sessions, and the typical
time interval between times when a user checks his or her email account for
new mail. Each of these statistics is gathered and then fed into an artificial-
intelligence machine learning system to determine a typical profile for each
user and/or host that the IDS is monitoring.

The profile is a statistical representation of the typical ways that a user
acts or a host is used; hence, it can be used to determine when a user or
host is acting in highly unusual, anomalous ways. Once a user profile is in
place, the IDS manager can determine thresholds for anomalous behaviors
and then sound an alarm any time a user or host deviates significantly from
the stored profile for that person or machine. (See Figure 6.19.)

Statistical intrusion detection doesn’t require any prior knowledge of
established intrusion attacks and it has a potential ability to detect novel
kinds of intrusions. Since statistical IDSs rely on analyzing patterns in
network traffic, it would be difficult for an attacker to hide his behavior
from an IDS manager using such techniques. For example, a statistical IDS
could learn that a certain user is always out of the office (and not using her
computer) on Fridays. Thus, if a login attempt is made on her computer on
a Friday, it could be an indication of an intrusion. Likewise, a statistical
IDS could learn that a certain network server almost never initiates or

6.4. Intrusion Detection

Day 1 Day 2 Day 3 Unusual

307

\ l / (anomalous)

A.l. Machine behavior

Learning System N /

User Profile Day 15
Figure 6.19: How a statistical intrusion detection system works. Statistics
about a user are gathered over a sequence of days, and a user profile is de-
termined based on typical behaviors, as defined by an artificial-intelligence
machine learning system. Then, on a day when one of the measures is
highly unusual compared to the user profile, an alarm would be sounded.

accepts UDP sessions. Thus, an attempt to initiate a UDP connection to
this computer could be an attempt to perform some kind of attack.

The potential weakness of statistical methods, however, is that some
nonmalicious behavior may generate a significant anomaly, which could
lead to the IDS triggering an alarm. Such sensitivity to normal changes in
system or user behavior therefore leads to false positives. For example, if a
user has an upcoming deadline and suddenly decides to use a new program
a large number of times, this might trigger a false alarm. Likewise, if a
web server posts some popular content, like a study guide for an upcoming
exam, then its usage might exhibit benign behavior that is also anomalous.

In addition, a stealthy attacker may not generate a lot of traffic and
thereby might go unnoticed by a statistical network IDS, leading to false
negatives. For example, attackers may encapsulate malicious content in
benign network protocols such as HTTP, hoping that this traffic will be
ignored as ordinary network behavior. Thus, in practice, most intrusion
detection systems incorporate both rule-based and statistical methods.

308 Chapter 6. Network Security IT

6.4.4 Port Scanning

Determining which traffic is permitted through a firewall and which ports
on a target machine are running remote services is a crucial step in an-
alyzing a network for security weaknesses. Any technique that allows a
user to enumerate which ports on a machine are accepting connections is
known as port scanning. Ports may either be open (accepting connections),
closed (not accepting connections), or blocked (if a firewall or other device
is preventing traffic from ever reaching the destination port).

Port scanning has a somewhat controversial legal and ethical standing:
while it may be used for legitimate purposes to evaluate the security of
one’s own network, it is also commonly used to perform network recon-
naissance in preparation for an attack. Thus, detecting port scanning is
a form of preliminary intrusion detection. One of the most popular port
scanners in use is nmap, which is available for both Linux and Windows.
An example nmap scan is depicted in Figure 6.20.

root:~% nmap -s5 -0 192.168.1.101

Starting Nmap 4.76 { http://mmap.org) at 2009-10-12 15:13 EDT
Interesting ports on 192.168.1.101:
Hot shown: 995 closed ports

PCORT STATE SERVICE

22/tcp open ssh

5001/tcp open commplex-link
8009/tcp open ajpl3

8180/tcp open unknown

8888/tcp open sun-answerbook
Device type: general purpose
Running: Linux 2.6.X

05 details: Linux 2.6.17 - 2.6.25
Network Distance: 0 hops

05 detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Hmap done: 1 IP address (1 host up) scanned in 1.68 seconds

Figure 6.20: Performing a SYN scan with nmap.

Open ports represent a point of contact between the Internet and the
application that is listening on that particular port. As such, open ports are
potential targets for attack. If a malicious party can successfully exploit a
vulnerability in the host operating system or the application listening on an
open port, they may be able to gain access to the target system and gain a
foothold in the network that could be used for further exploitation. Because
of this risk, it is advisable to only open ports for essential network services,
and to ensure that the applications listening on these ports are kept up-to-
date and patched against recent software vulnerabilities. Likewise, admin-
istrators sometimes perform port scans on their own computer networks to
reveal any vulnerabilities that should be closed.

6.4. Intrusion Detection

As an example of the potential for exploitation, in 2003 a vulnerability
was discovered in a Windows remote service known as DCOM-RPC (Dis-
tributed Componenet Object Model-Remote Procedural Call). An attacker
could craft an exploit that caused a buffer overflow condition in this service,
allowing remote code execution and complete control of the target machine.
Preventing access to the port this service was running on would prevent
successful exploitation.

TCP Scans

There are several techniques for determining the state of the ports on a
particular machine. The simplest method of port scanning is known as a
TCP scan or connect scan, in which the party performing the scan attempts
to initiate a TCP connection on each of the ports on a target machine. These
attempts are done using a standard operating system call for opening a TCP
connection at a specified port. Those ports that complete the connection are
open, while those that don’t are either closed or blocked.

SYN Scans

Another common method is known as a SYN scan, in which the party
performing the scan issues a low-level TCP packet marked with the SYN
flag for each port on the target machine. If the port is open, then the service
listening on that port will return a packet marked with the SYN-ACK flag,
and if not, no response will be issued. On receiving a SYN-ACK packet,
the scanner issues a RST packet to terminate rather than complete the TCP
handshake.

Idle Scanning

One other scanning technique, known as idle scanning, relies on finding
a third-party machine, known as a “zombie,” that has predictable TCP
sequence numbers (Section 5.4.4). The attacker can use the zombie’s weak
TCP implementation as a tool to perform a port scan on a separate target
without leaving any evidence on the target’s network. First, the attacker
sends a probe, in the form of a SYN-ACK TCP packet, to the zombie. Since
this packet was unprompted by the zombie, it will reply to the attacker with
a RST packet containing a sequence number. The attacker then sends a SYN
packet to the target he wishes to scan, but spoofs the source IP address with
that of the zombie machine. If the scanned port is open, the target will reply
to the zombie with a SYN-ACK packet. Since the zombie did not open the
connection with a SYN packet, it replies to the target with another RST

309

310

Chapter 6. Network Security IT

packet, and increments its sequence number counter. When the attacker
probes the zombie again, it checks the received sequence number. If it has
been incremented, then the chosen port on the target is open, and if not,
the port is either closed or blocked. This process is depicted in Figure 6.21.
Since finding a zombie with predictable TCP sequence numbers may be
difficult, this scan is not often used in practice, but it provides an effective
way to scan a target without leaving any record of the attacker’s IP address
on the target’s network.

Evil Client SYNACK Zombie
— Probe —>
(a)
RST |
e
T Response: Yz
seq = X
(b)
s EE
4
SYN-ACK
SYN Probe, Response
spoofed
source |IP /
RST

\ Response:
/ seq=x+1
Target

SYN-ACK
— Probe —>

(c)

e RST -
Response:

seq=x+2

Figure 6.21: An idle scan: (a) The attacker probes a zombie with predictable
sequence numbers. (b) The attacker sends a spoofed TCP packet to the
target. (c) The attacker checks the state of the port by probing the zombie
again.

6.4. Intrusion Detection

UDP Scans

While these scans can gather information on TCP ports, a different tech-
nique must be used to check the status of UDP ports. Because UDP is a
connectionless protocol, there are fewer cues from which to gather infor-
mation. Most UDP port scans simply send a UDP packet to the specified
port. If the port is closed, the target will usually send an ICMP “destination
unreachable” packet. If the port is open, then no response will be sent. This
scan is not very reliable, however, because open ports and ports blocked
by a firewall will both result in no response. To improve the reliability of
the response, many port scanners choose to query UDP ports using UDP
packets containing the payloads for appropriate applications. For example,
to check the status of port 53, the default port for DNS, a port scanner might
send a DNS request to the target. This technique may be more reliable, but
it is less versatile in that it requires a specialized probe for each target port.

Port Scan Security Concerns

In addition to determining whether ports are open, closed, or blocked, it
is often desirable to gain additional information about a target system. In
particular, the type and version of each remote service and the operating
system version may be valuable in planning an attack. To accomplish this,
port scanners may exploit the fact that each operating system has slight
differences in its TCP/IP stack implementation and, as such, might respond
differently to various requests or probes. Similarly, different implementa-
tions and versions of remote services may have subtle differences in the
way they respond to certain requests, and knowledge of these differences
may allow port scanners to determine the specific service running. This
process, known as fingerprinting, is a valuable component of network
reconnaissance.

In the early days of port scanning, detecting port scans was simple,
since scans would normally proceed sequentially through all possible port
numbers. Such scans were then replaced by probing random port numbers,
which made detection more difficult but not impossible. For example,
a signature for a random port scan could be a sequence of connection
attempts made to different destination ports all from the same source IP
address. An IDS sensor configured with this signature would be able to
alert an IDS manager to a port scan from outside the network. Other port
scan detection rules can be defined by noting TCP connection attempts to
ports that are known to be closed, as well as port scan detection rules that
can be derived from the unique natures of the types of scans previously
discussed.

311

312 Chapter 6. Network Security I1

6.4.5 Honeypots

Another tool that can be used to detect intrusions, including port scans, is
a honeypot. This is a computer that is used as “bait” for intruders. It is
often placed on network in a way that makes it attractive, such as having
it configured with software with known vulnerabilities and having its hard
drive full of documents that appear to contain company secrets or other
apparently valuable information. (See Figure 6.22.)

Attractive content

[[

[k [| |t
1}

13

-
ﬂnjtl t |t

/

Honeypot

- B

Less-attractive
actually-used systems
Deliberate vulnerabilities

Figure 6.22: A honeypot computer used for intrusion detection.

A honeypot computer is an effective tool for the following reasons:

o Intrusion detection. Since attempts to connect to a honeypot would
not come from legitimate users, any connections to a honeypot can be
safely identified as intrusions. Based on the way in which such con-
nections are initiated, an intrusion detection system can be updated
with the latest attack signatures.

e Evidence. Appealing documents on a honeypot computer encourage
an intruder to linger and leave evidence that can possibly lead to the
identification of the intruder and/or his location.

e Diversion. A honeypot also may appear to be more attractive to
potential intruders than legitimate machines, distracting intruders
from sensitive information and services.

6.5. Wireless Networking

6.5 Wireless Networking

The Internet was originally conceived as a means for trusted parties to
communicate over a wired network. The advent of wireless networking,
however, has introduced many new challenges in providing security to
users who may be wirelessly transmitting information that may include
untrusted parties. Such challenges include the following. (See Figure 6.23.)
o Packet sniffers. It is much easier to perform packet sniffing in a
wireless network, since all the computers sharing a wireless access
point are on the same network segment.

e Session hijacking. It is much easier to perform session hijacking, since
a computer with a wireless adapter can sniff packets and mimic a
wireless access point.

e Interloping. A novel concern in wireless networking is an unautho-
rized user who is connecting to the Internet through someone else’s
wireless access point.

o Legitimate users. It is no longer possible to authenticate a legitimate
host simply by its physical presence on the local-area network; addi-
tional methods for authentication and authorization are needed.

|

Wireless
access point

Packet sniffing
(much easier)

Session hijacking
(much easier)

Legitimate user
(needs authentication
and/or authorization) Interloper
(using someone else’s
access point)

Figure 6.23: Security concerns in wireless networking.

313

314

Chapter 6. Network Security IT

6.5.1 Wireless Technologies

As with all Internet traffic, wireless communications on the Internet make
use of the layered IP stack. In wireless networking, parties connecting to a
network are referred to simply as clients, while a wireless router or other
network interface that a client connects to is known as an access point (AP).

Instead of relying on the Ethernet protocol at the physical and link
layers, most wireless networks rely on the protocols defined by the IEEE
802.11 family of standards, which define methods for transmitting data
via radio waves over predefined radio frequency ranges. In particular,
802.11 defines the structure of wireless frames that encapsulate the higher
layers of the IP stack. To allow greater flexibility in handling both wired
and wireless data, most TCP/IP implementations perform reframing of
packets depending on their intended recipient. For example, wireless traffic
received in the form of 802.11 frames is converted into Ethernet frames
that are passed to higher layers of the TCP/IP stack. Conversely, Ethernet
frames to be routed to wireless clients are converted into 802.11 frames.

Wireless Networking Frames

There are several different frame types defined in the 802.11 standard. First,
an authentication frame is used by a client to present its identity to an
access point. If this identity is accepted by the access point, it replies
with another authentication frame indicating success. Next, a client sends
an association request frame, which allows the access point to allocate
resources and synchronize with the client. Again, if the client’s credentials
are accepted, the access point replies with an association response frame.

To terminate a wireless connection, an access point sends a disasso-
ciation frame to cut off the association, and a deauthentication frame to
cut off communications altogether. If at any point during communications
a client becomes accidentally disassociated from the desired access point
(if, for example, the client moves to within range of a stronger wireless
signal), it may send a reassociation request frame, which will prompt
a reassociation response frame. These frames are collectively known as
management frames because they allow clients to establish and maintain
communications with access points.

There are three additional common management frames that allow
clients and networks to request and broadcast their statuses. In particular,
access points can periodically broadcast a beacon frame, which announces
its presence and conveys additional information to all clients within range.

6.5. Wireless Networking

In addition to these management frames which set up and maintain
communications, data frames encapsulate the higher levels of the IP stack,
and include content from web pages, file transfers, and so on.

6.5.2 Wired Equivalent Privacy (WEP)

Because wireless networks communicate via radio waves, eavesdropping
is much easier than with wired networks. In an eavesdropping scenario
on a wired network, an attacker must gain access to a physical network
interface on the LAN, but when communications are wireless, anyone with
appropriate equipment (including most wireless cards) can capture and
inspect traffic being sent over the air. The Wired Equivalent Privacy (WEP)
protocol was incorporated into the original 802.11 standard with the goal of
providing confidentiality, integrity, and access control to a wireless LAN.

WEP Encryption

WEP encrypts each data frame using a stream cipher, which is a symmetric
cryptosystem where the ciphertext C is obtained as the exclusive OR of the
plaintext message M and a pseudo-random binary vector S generated from
the secret key, called keystream:

C=MoS.

The essence of a stream cipher is the method for generating a keystream
of arbitrary length from the secret key, which serves as a seed. (See
Figure 6.24.) For a stream cipher to be secure, the same keystream should
never be reused or else the attacker can obtain the exclusive OR of two
plaintext messages, which enables a statistical attack to recover both the
plaintext and the keystream.

TS

315

ﬂ % Py | Ciphertext

Keystream &
— | Keystream |
Figure 6.24: Encryption with a stream cipher.

WEP uses the RC4 stream cipher, which is simple and computationally
efficient and supports a seed with up to 256 bits. The seed is obtained by
concatenating a 24-bit initialization vector (IV) with the WEP key, a secret
key that is shared by the client and the access point. In the first version

316

Chapter 6. Network Security IT

of WEP, the WEP key had 40 bits, resulting in a 64-bit RC4 seed. Later
versions of the protocol extended the key length, resulting in a seed of 128
bits, and eventually 256 bits. To allow decryption, the IV is transmitted
together with the ciphertext. The access point then concatenates the IV with
the WEP key, generates its own keystream, and computes the message as
the exclusive OR of the ciphertext with the keystream. In order to prevent
reuse of keystreams, IV values should not be reused. However, the WEP
standard does not require access points to check for and reject reused IVs,
a vulnerability exploited in several attacks.

For integrity protection, WEP augments the original message with a
CRC-32 checksum, which is the output value of a hash function applied to
the message. Since CRC-32 is not a cryptographic hash function, it protects
the integrity of the message only against transmission errors. Some attacks
on WEP exploit this weakness of CRC-32.

WEP Authentication Methods

WEP can be used with two basic authentication methods, open system
and shared key authentication. When using open system authentication,
the client does not need to provide any credentials and can associate itself
with the access point immediately. At this point, the client can only send
and receive information from the access point using the correct encryption
key—if the correct key is not used, the access point ignores the client’s
requests. In contrast, shared key authentication requires the client to prove
possession of the WEP key to the access point before associating with the
access point. The access point sends a plaintext challenge to the client, who
encrypts it with and sends the ciphertext to the access point. If the received
ciphertext decrypts correctly to the challenge, then the client is allowed to
associate with the access point.

Attacks on WEP

Intuitively, it may seem as shared key authentication provides stronger
security, but in reality this is not the case. Because the challenge is sent
to the client in plaintext and the response includes the unencrypted IV, an
attacker who intercepts both the challenge (transmitted as plaintext) and
response can easily recover the keystream used by XOR-ing the encrypted
data frame with the plaintext challenge. The IV and keystream can be later
reused for authenticating the attacker or injecting packets on the network.
However, even in open system mode, WEP turns out to be insecure. It
has been shown that in a large set of RC4 keystreams, the first few bytes of
the keystream are strongly nonrandom This property can be used to recover

6.5. Wireless Networking

information about the key by analyzing a high number of ciphertexts. To
apply this attack to WEP, one needs to recover several thousand encrypted
packets along with their IVs (at the time of this writing, the most recent
attack can recover a WEP key with 50% probability using 40,000 data
packets). If the network is not extremely busy, acquiring this many packets
may take a very long time.

However, it is possible for an attacker to authenticate and associate to
the access point (in open system mode, this does not require the WEP key),
and then capture a single ARP packet (Section 5.2.3) from another client on
the network. The attacker can then repeatedly transmit this packet to the
access point, causing it to reply with a retransmission of this ARP packet
along with a new IV. This attack is known as ARP reinjection, and can allow
an attacker to quickly capture enough IVs to recover the WEP key, at which
point full access has been achieved and the attacker can perform additional
attacks such as ARP cache poisoning.

On an idle network, capturing an ARP packet from a client may be
difficult, especially if new connections are made infrequently. To speed
up the process, an attacker can associate with the network and then send
a deauthentication packet to the client, posing as the access point. The
client will dutifully deauthenticate from the access point and reauthenti-
cate, issuing a new ARP packet that can be captured by the attacker and
retransmitted.

Another technique allows an attacker to decrypt WEP encrypted pack-
ets by exploiting the way in which the insecure CRC-32 checksum is han-
dled. Recall that the CRC-32 checksum is appended to the data of the packet
before encryption. Most access points silently drop packets with incorrect
checksums. A technique known as the chop-chop attack uses this property
of the access point to verify guesses of the packet contents. Essentially, the
attacker truncates the data of the packet by one byte and corrects the CRC-
32 checksum under the assumption that the dropped byte was a guessed
byte x. This new packet is sent to the access point, and it will generate
a response only if the guess x for the byte was correct. This guessing is
repeated until the last byte is successfully guessed, at which point one byte
of the keystream has been recovered. The entire process is then repeated
until the entire keystream is recovered, at which point an ARP packet can
be forged, encrypted with the keystream, and reinjected.

One final technique to compromise WEP security relies entirely on
wireless clients, and requires absolutely no interaction with the targeted
access point. The caffé latte attack, named for the fact that it could be
used to attack clients in coffee shops with wireless access, relies on the
fact that many operating systems feature wireless implementations that
automatically connect to networks that have previously been connected to.

317

318

Chapter 6. Network Security IT

The attack takes advantage of this fact by listening to wireless traffic and
identifying networks that a target client is attempting to connect to. The
attacker then sets up a honeypot or soft access point, a fake wireless access
point with the same SSID as the AP the client is attempting to connect to,
designed to lure in transmissions from the victim.

Recall that no stage of WEP authentication requires the access point
to possess the WEP key. The client transmission is checked by the AP to
confirm that the client possesses the key, but at no point does the client ever
confirm that the AP has the key. As a result, the victim client in the caffe
latte scenario associates and authenticates to the honeypot AP and sends
a few ARP packets encrypted with the WEP key. However, in order to
retrieve the WEP key, the attacker must have a high number of encrypted
packets. To trick the client into sending these packets, the attacker takes the
encrypted ARP requests received when the client connects to the honeypot
AP and flips several predetermined bits. Specifically, the bits referring
to the Sender MAC and Sender IP address are modified, and the CRC-32
checksum is recomputed using the chop-chop technique. This results in a
valid encrypted ARP request with the client as the intended destination.
The attacker then repeatedly sends this valid encrypted ARP request to
the client, resulting in the client responding with enough encrypted ARP
replies for the attacker to break the WEP key. After recovering the key, the
attacker could modify the honeypot AP to actually use the key, allowing
them to sniff and potentially modify traffic from the client, as in a man-in-
the-middle scenario. The advantage of this attack over previous methods is
that it does not require any interaction with the actual vulnerable wireless
network. An attacker could use this technique to break an organization’s
WEP key without needing to be anywhere near the AP, as long as a client
who had previously authenticated to that network was available.

6.5.3 Wi-Fi Protected Access (WPA)

Once the weaknesses in RC4 and WEP were published, IEEE quickly devel-
oped new standards that met more rigorous security requirements. The Wi-
Fi Alliance then developed a protocol based on this standard known as Wi-
Fi Protected Access (WPA). WPA is a more complex authentication scheme
that relies on several stages of authentication. First, a shared secret key is
derived for use in generating encryption keys and the client is authenticated
to the access point. Next, this shared secret is used with an encryption
algorithm to generate keystreams for encrypting wireless traffic. Finally,
messages can be transmitted safely.

6.5. Wireless Networking

Authentication

WPA features two basic modes: PSK (preshared key) mode, also known
as WPA Personal, is designed for home and small office applications,
while 802.1x mode, also known as RADIUS or WPA Enterprise, is ideal
for larger networks and high-security applications. In 802.1x mode, a third-
party authentication service is responsible for authenticating the client and
generating key material. WPA allows integration with several choices
for authentication mechanisms, each belonging to a framework known as
the Extensible Authentication Protocol (EAP). The selected mechanism is
invoked by the access point, and is used to negotiate session keys to be used
by the client and access point during the next stage. 802.1x authentication
protocols can make use of certificates and other elements from public-
key cryptography to guarantee security. In PSK mode, a shared secret is
established by manually entering a key into both the access point and the
client.

Encrypting Traffic

The client and access point use the newly generated encryption keys to
communicate over a secure channel. WPA has two possible protocols for
encrypting traffic. The Temporal Key Integrity Protocol (TKIP) makes use
of RC4 and was designed to provide increased security over WEP while
remaining compatible with legacy hardware. Newer hardware supports a
standard called WPA2, which features a stream cipher based on AES and a
cryptographically secure MAC based on AES for message integrity.

TKIP attempts to address the cryptographic weaknesses of WEP’s RC4
implementation. WEP is especially weak because it simply concatenates the
IV with the encryption key to generate the RC4 seed. TKIP remedies this
by increasing the IV length to 48 bits and by incorporating a key-mixing
algorithm that combines the key with the IV in a more sophisticated way
before using it as an RC4 seed to generate a keystream. In addition, TKIP
replaces the CRC-32 checksum with a 64-bit message integrity code (MIC)
computed with the MICHAEL algorithm, which was designed to serve as
a mesage authentication code (MAC) (Section 1.3.4) computed from the
message and a secret 64-bit key. The MICHAEL algorithm has been shown
to be cryptographically insecure. However, attacks against MICHAEL are
much more difficult to accomplish than attacks against CRC-32.

When an access point receives a packet with a nonmatching MIC, coun-
termeasures such as alerting a network administrator or regenerating the
PTK may be invoked. Finally, TKIP implements a sequence counter in the

319

320

Chapter 6. Network Security IT

packets to prevent replay attacks. If a packet is received out of order, it is
simply dropped.

TKIP provides many improvements over standard WEP encryption, but
its use is now deprecated in favor of the newer WPA2 protocol. While
TKIP relies on the RC4 cipher and MICHAEL algorithm (both efficient
but cryptographically weak), WPA2 instead uses the strong AES cipher for
protecting both integrity and confidentiality. The AES cipher has not been
broken as of the time of this writing.

Attacks on WPA

Currently, WPA in 802.1x mode is considered secure. However, PSK mode
may be vulnerable to password cracking if a weak password is used and an
attacker can capture the packets of the initial four-way handshake that au-
thenticates the target to the access point. Once this handshake is captured,
the attacker can launch a dictionary attack against the encrypted messages.
However, this attack is made more complicated by the mechanism used
to convert the user-supplied key, which may be as simple as a dictionary
word, into the necessary 256-bit string. The key can be provided directly as
a string of 64 hexadecimal digits (which would make any dictionary attack
infeasible), or may be provided as a passphrase of 8 to 63 ASCII characters.

In the event that the passphrase is entered using ASCII, the key is
calculated by using the SSID of the access point as a salt for a key derivation
function known as PBKDF2, which uses 4,096 iterations of the HMAC-
SHA1 hash as a salt is designed to prevent dictionary attacks relying on
extensive precomputation. However, researchers have published tables of
precomputed keys corresponding to the most popular SSIDs. In addition,
if the password used is a simple dictionary word, an attacker could recover
the password using a dictionary attack without the use of any precompu-
tation. This is not considered a weakness in WPA itself, but rather serves
as a reminder that strong passwords should be used to prevent dictionary
attacks.

More recently, researchers discovered a vulnerability in TKIP that al-
lows an attacker to recover the keystream used for a single packet (as
opposed to the key used to seed that keystream), allowing that attacker
to transmit 7-15 arbitrary packets on that network. The attack stems from
the fact that for compatibility purposes, TKIP continues to utilize the inse-
cure CRC-32 checksum mechanism in addition to the improved MICHAEL
algorithm.

Just as with the chop-chop attack on WEP, an attacker uses the fact that
access points may drop packets that do not have valid CRC-32 checksums
to his advantage. The attacker captures an ARP packet, which is easily

6.5. Wireless Networking

identified by its length. In fact, the contents of ARP requests are mostly
known by the attacker ahead of time, with the exception of the last bytes of
the source and destination IP addresses, the 8-byte MICHAEL algorithm,
and the 4-byte CRC-32 checksum. Using a variation on the chop-chop
method, the attacker guesses values for these unknown bytes, using the
access point to verify each guess.

However, TKIP has an additional defense mechanism that issues a
warning and regenerates encryption keys when two messages with the
correct CRC-32 but incorrect MICHAEL checksum are received within the
same minute. To circumvent this, the attacker can simply wait 1 minute
between each guessed value. Once the packet has been decrypted, the
attacker has recovered both the keystream and the MICHAEL key used to
generate the packet’s checksum. Using this information, the attacker can
craft and transmit 7-15 arbitrary packets to the network. This attack can
be prevented by configuring TKIP to reissue keys at short intervals, or by
switching to the more secure WPA2 protocol, that no longer uses CRC-32.

321

322 Chapter 6. Network Security IT

6.6 EXxercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-6.1
R-6.2

R-6.3

R-64

R-6.5

R-6.6

R-6.7

R-6.8

R-6.9

R-6.10
R-6.11

R-6.12

R-6.13

Describe the main purpose of DNS.

Suppose the transaction ID for DNS queries can take values from
1 to 65,536 and is randomly chosen for each DNS request. If an
attacker sends 1,024 false replies per request, how many requests
should he trigger to compromise the DNS cache of the victim with
probability 99%?

Why are pharming and phishing attacks often used in concert with
each other?

Give three different techniques that an attacker can use to make a
victim send DNS requests to domains chosen by the attacker.
Explain the difference between the subdomain DNS cache poison-
ing attack and the traditional version of this attack.

Compare and contrast the way a regular DNS request is answered
and the way it would be answered and authenticated in DNSSEC.
Explain how a stateless firewall would block all incoming and
outgoing HTTP requests.

How can SSH be used to bypass firewall policy? What can a
network administrator do to prevent this circumvention?

Describe a firewall rule that can prevent IP spoofing on outgoing
packets from its internal network.

What is the difference between a misfeasor and clandestine user?
Explain how a port scan might be a preliminary indication that
another attack is on its way.

Which is worse for an intrusion detection system, false positives or
false negatives? Why?

Give examples of IDS audit records for each of the following ac-
tions:

(a) A user, Alice, reading a file, foo.txt, owned by Bob, of size 100
MB, on December 18, 2010

(b) A client, 129.34.90.101, initiating a TCP session with a server,
45.230.122.118, using 0.01 CPU seconds, on January 16, 2009

(c) A user, Charlie, logging out from his computer, using 0.02 CPU
seconds, on March 15, 2010

R-6.14

R-6.15

R-6.16

R-6.17

6.6. Exercises

What are the main differences between WEP and WPA? What are
the different possible modes under the WPA standard?

Explain why deep packet inspection cannot be performed on pro-
tocols such as SSL and SSH.

Explain how IP broadcast messages can be used to perform a smurf
DOS attack.

How does a honeypot fit in with the security provided by a firewall
and intrusion detection system?

Creativity

C-6.1

C-6.2

C-6.3

C-6.4

Suppose DNS IDs were extended from 16 bits to 32 bits. Based
on a birthday paradox analysis, how many DNS requests and
equal number of fake responses would an attacker need to make in
order to get a 50% chance of succeeding in a DNS cache poisoning
attack?

Explain why a large value for the TTL (time-to-live) of replies to
DNS queries does not prevent a DNS cache poisoning attack.
Suppose Alice sends packets to Bob using TCP over IPsec. If
the TCP acknowledgment from Bob is lost, then the TCP sender
at Alice’s side will assume the corresponding data packet was
lost, and thus retransmit the packet. Will the retransmitted TCP
packet be regarded as a replay packet by IPsec at Bob’s side and be
discarded? Explain your answer.

An alternative type of port scan is the ACK scan. An ACK scan
does not provide information about whether a target machine’s
ports are open or closed, but rather whether or not access to those
ports is being blocked by a firewall. Although most firewalls block
SYN packets from unknown sources, many allow ACK packets
through. To perform an ACK scan, the party performing the scan
sends an ACK packet to each port on the target machine. If there
is no response or an ICMP “destination unreachable” packet is
received as a response, then the port is blocked by a firewall. If
the scanned port replies with a RST packet (the default response
when an unsolicited ACK packet is received), then the ACK packet
reached its intended host, so the target port is not being filtered
by a firewall. Note, however, that the port itself may be open or
closed: ACK scans help map out a firewall’s rulesets, but more
information is needed to determine the state of the target machine’s
ports. Describe a set of rules that could be used by an intrusion
detection system to detect an ACK scan.

323

324

Chapter 6. Network Security IT

C-6.5

C-6.6

C-6.7

C-6.8

C-6.9

C-6.10

C-6.11

C-6.12

C-6.13

P-6.1

During a FIN scan, a FIN packet is sent to each port of the target.
If there is no response, then the port is open, but if a RST packet
is sent in response, the port is closed. The success of this type of
scan depends on the target operating systems—many OSs, includ-
ing Windows, have changed the default behavior of their TCP/IP
stacks to prevent this type of scan. How? Also, how could an
intrusion detection system be configured to detect a FIN scan?

Explain how it would give a potential intruder an additional ad-
vantage if he can spend a week stealthily watching the behaviors
of the users on the computer he plans to attack.

Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a DNS cache poisoning at-
tack.

Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect an ARP spoofing attack.

Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a ping flood attack.

Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a smurf attack.

Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a SYN flood attack.

The coupon collector problem characterizes the expected number
of days that it takes to get n coupons if one receives one of these
coupons at random every day in the mail. This number is ap-
proximately nlnn. Use this fact to compare the number of TCP
connections that are initiated in a sequential port scan, going from
port 1 to 65535, directed at some host, to the expected number that
are requested in a random port scan, which requests a random port
each time (uniformly and independently) until it has probed all of
the ports.

Describe a modification to the random port scan, as described in
the previous exercise, so that it still uses a randomly generated
sequence of port numbers but will now have exactly the same
number of attempted TCP connections as a sequential port scan.

Projects

Keep a diary that chronicles how you use your computer for an
entire week. Try to include all the key elements that are included
in an intrusion detection event log, including which files you read

P-6.2

P-6.3

P-6.4

P-6.5

P-6.6

6.6. Exercises

and write, which programs you run, and which web sites you
visit. (Your browser probably keeps a history of this last set of
events itself.) Write a term paper that discusses, at a high level, the
types of rules and statistics that could be used to build an intrusion
detection system for your computer that could tell if someone else
was using it besides you. Include a discussion of how easy or
difficult it is to predict normal and anomalous behavior for your
computer based on your usage patterns for this week.

Write a term paper that discusses the risks of pharming and phish-
ing with respect to identity theft, including spam emails claiming
to come from well-known companies and financial institutions. In-
clude in your paper a discussion of some of the current techniques
being deployed to reduce pharming and phishing, including how
effective they are.

On an authorized virtual machine network, define three virtual
machines, DNS Server, Victim, and Attacker, which could in fact
all really be on the same host computer. On DNS Server, install
the DNS server software (such as bind), and configure the DNS
server to respond to the queries for the example.com domain. (It
should be noted that the example.com domain name is reserved
for use in documentation and is not owned by anybody.) Configure
Victim so it uses DNS Server as its default DNS server. On Attacker,
install packet sniffing and spoofing tools, such as Wireshark and
Netwox. Let Attacker and Victim be on the same LAN, so Attacker
can sniff Victim’s DNS query packets, and have Attacker launch
DNS attacks on Victim. Once this succeeds, let Attacker and Victim
be on two different networks, so Attacker cannot see the Victim'’s
DNS query packets. Have Attacker launch DNS attacks on Victim
in this more difficult setting.

On a virtual machine, install the Linux operating system. Imple-
ment a simple, stateless, and personal firewall for this machine.
The firewall inspects each packet from the outside, and filters out
the packets with the IP/TCP/UDP headers that match the prede-
fined firewall rules. The Linux built-in Netfilter mechanism can
be used to implement the firewall.

On a virtual machine, install the Linux operating system. Linux has
a tool called iptables, which is essentially a firewall built upon the
Netfilter mechanism. Develop a list of firewall rules that need
to be enforced on the machine, and configure iptables to enforce
these rules.

Design and implement a program to do DNS lookups, and simu-
late a DNS poisoning attack in this system.

325

326 Chapter 6. Network Security IT

P-6.7 Write a web crawler or collect enough spam emails for yourself
and friends in order to find five phishing web sites. Compare
the content of these pages with their authentic counterparts, both
in terms of HTML source and the look and feel of the pages as
displayed in the browser.

P-6.8 Write a client/server program that tunnels data using a noncon-
ventional protocol. For example, create a messaging program that
sends data in the payload of ICMP packets.

Chapter Notes

Several of the protocols mentioned in this chapter are documented with RFCs:

e RFC 1035 - DNS
e RFC 2460 - IPv6 and IPSec

e RFC 4251 - SSH

For more details on the topics covered in this chapter, see the book by Cheswick,
Bellovin and Rubin [16] and the previously cited books by Comer [18], Tanenbaum
[100], Kaufman, Perlman, and Speciner [46], and Stallings [96]. Lioy et al. present
a survey of DNS security [57]. Dan Kaminsky discovered the subdomain reso-
lution attack for cache poisoning and collaborated with major providers of DNS
software on the development of patches before a making public announcement
of the vulnerability in 2008. Keromytis et al. discuss implementing IPSec [48].
Martin Roesch, lead developer of the Snort intrusion detection system, describes
its goals and architecture [84]. Niels Provos presents a framework for virtual
honeypots [78]. Attacks on WEP are given by Borisov, Goldberg and Wagner [12]
and by Stubblefield, Ioannidis and Rubin [98].

